Search results

Search for "patchy nanoparticles" in Full Text gives 3 result(s) in Beilstein Journal of Nanotechnology.

Solvent-induced assembly of mono- and divalent silica nanoparticles

  • Bin Liu,
  • Etienne Duguet and
  • Serge Ravaine

Beilstein J. Nanotechnol. 2023, 14, 52–60, doi:10.3762/bjnano.14.6

Graphical Abstract
  • patch made of grafted polystyrene chains. The multistage synthesis allows for a fine control of the patch-to-particle size ratio from 0.23 to 0.57. The assembly of the patchy nanoparticles can be triggered by reducing the solvent quality for the polystyrene chains. Dimers or trimers can be obtained by
  • nanoparticles. Keywords: assembly; chain stopper; patchy nanoparticles; patch-to-particle size ratio; self-assembly; Introduction Colloidal engineering has become an enormous research endeavor, with a major focus placed on creating increasingly scalable smart particles, such that desired structures can be
  • ., salty water). We show that only dimers or trimers can be obtained due to steric hindrance induced by the large silica cap of the patchy nanoparticles. The present study also extends the insights we recently gained about the capability of using 1-PSN with a PPSR of 0.60 as chain stoppers [31]. We show
PDF
Album
Full Research Paper
Published 06 Jan 2023

Advanced hybrid nanomaterials

  • Andreas Taubert,
  • Fabrice Leroux,
  • Pierre Rabu and
  • Verónica de Zea Bermudez

Beilstein J. Nanotechnol. 2019, 10, 2563–2567, doi:10.3762/bjnano.10.247

Graphical Abstract
  • synthesize clusters, so-called colloidal molecules [21]. Nanospherical satellites were covalently bonded via amide groups within the dimples of valence-endowed patchy nanoparticles, allowing the tuning of their topology and self-assembling ability. Polyion complex micelles formed by complexation between poly
PDF
Editorial
Published 20 Dec 2019

Colloidal chemistry with patchy silica nanoparticles

  • Pierre-Etienne Rouet,
  • Cyril Chomette,
  • Laurent Adumeau,
  • Etienne Duguet and
  • Serge Ravaine

Beilstein J. Nanotechnol. 2018, 9, 2989–2998, doi:10.3762/bjnano.9.278

Graphical Abstract
  • report a new route to synthesize clusters, or so-called colloidal molecules (CMs), which mimic the symmetry of molecular structures made of one central atom. We couple site-specifically functionalized patchy nanoparticles, i.e., valence-endowed colloidal atoms (CAs), with complementary nanospheres
  • (Figure 2c) presents several characteristic bands such as the C=O stretching at 1712 cm−1 and the N–H stretching of the resulting amide at 1556 cm−1. The second type of precursors, i.e., the valence-endowed patchy nanoparticles, were fabricated according to the following protocol: Bipods or tetrapods made
  • satellites within the dimples of valence-endowed patchy nanoparticles. The synthetic route is highly versatile and can be extended to other precursors such as metallic or semiconductor nanoparticles, opening the way to the synthesis of a broad panel of (multi)functional nanomaterials with a controlled shape
PDF
Album
Full Research Paper
Published 06 Dec 2018
Other Beilstein-Institut Open Science Activities